Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches
نویسندگان
چکیده
during the last two decades there has been a growing interest in Particle Filtering (PF). However, PF suffers from two long-standing problems that are referred to as sample degeneracy and impoverishment. We are investigating methods that are particularly efficient at Particle Distribution Optimization (PDO) to fight sample degeneracy and impoverishment, with an emphasis on intelligence choices. These methods benefit from such methods as Markov Chain Monte Carlo methods, Mean-shift algorithms, artificial intelligence algorithms (e.g., Particle Swarm Optimization, Genetic Algorithm and Ant Colony Optimization), machine learning approaches (e.g., clustering, splitting and merging) and their hybrids, forming a coherent standpoint to enhance the particle filter. The working mechanism, interrelationship, pros and cons of these approaches are provided. In addition, Approaches that are effective for dealing with high-dimensionality are reviewed. While improving the filter performance in terms of accuracy, robustness and convergence, it is noted that advanced techniques employed in PF often causes additional computational requirement that will in turn sacrifice improvement obtained in real life filtering. This fact, hidden in pure simulations, deserves the attention of the users and designers of new filters.
منابع مشابه
A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking
We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal...
متن کاملFault Detection and Isolation for GPS RAIM Based on Genetic Resampling Particle Filter Approach
An integrity monitoring system is an inseparable part of global positioning system (GPS). According to the measurement noise feature of GPS receiver and the degeneracy phenomenon and alleviating the sample impoverishment problem in particle filter (PF). An approach to fault detection and isolation (FDI) for GPS receiver autonomous integrity monitoring (RAIM) based on genetic resampling particle...
متن کاملStudy on Multi-Target Tracking Based on Particle Filter Algorithm
Particle filter is a probability estimation method based on Bayesian framework and it has unique advantage to describe the target tracking non-linear and non-Gaussian. In this study, firstly, analyses the particle degeneracy and sample impoverishment in particle filter multi-target tracking algorithm and secondly, it applies Markov Chain Monte Carlo (MCMC) method to improve re-sampling process ...
متن کاملReal-coded genetic algorithm particle filters for high-dimensional state spaces
This thesis successfully addresses the issues faced by particle filters in high-dimensional statespaces by comparing them with genetic algorithms and then using genetic algorithm theory to address these issues. Sequential Monte Carlo methods are a class of online posterior density estimation algorithms that are suitable for non-Gaussian and nonlinear environments, however they are known to suff...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014